
MadHoc

Mobile Ad Hoc Networking

The Team

Ethan Niemeyer

Cole Cummings

Cody Lougee

Advisor/Client: George Amariucai

Project Description

● Mobile device chat application
● Works without typical network infrastructure
● Achieved by creating an ad-hoc network
● Encrypts messages

Ad Hoc

● No infrastructure
● Dynamically changing
● All nodes have equal responsibility/privileges on the network

Node

● Phones
● Each connects to those around it
● Propagate messages further

Example of an Ad Hoc Network

Early First semester

● Focused on researching existing projects
● Brushing up on Android
● Studying Ad Hoc networking examples

Existing App - Fire Chat

● Created by OpenGarden
● Wrote their own library for wireless communication on top of wifi and

bluetooth
● Their library is not open sourced
● Does not support any form of encryption right now

Existing App - Serval

● Created for Australian outback and areas where the population is too sparse
to have cell tower infrastructure

● Intended to be used by rescue personnel and law enforcement in
emergencies

● Also some everyday use by people

Original prototype - Android

● Group had some previous experience in Android
● We started basic prototypes in Android
● Some early time was spent looking into similar apps that already exist

Android

● Apps written in Java
● Similar Applications exist on Android
● Android’s implementation of Peer to Peer
● One way spoke network
● True Ad Hoc disabled at the firmware level

IOS

● Apps written in Swift
● Multipeer Connectivity library
● Multipeer provided basic ad hoc functionality
● Connects nearby nodes
● Sends data between nodes

IOS - Week 10, First semester

● Most promising of possible solutions
● However

○ No experience with Swift, little experience with mobile apps
○ Apps must be developed on Xcode which only runs on OSX
○ One member had an Apple computer, no one had Apple mobile devices
○ Multipeer isn’t perfect

Second Semester

● Holden transferred Universities
● Swift update broke boilerplate code and removed some functions

completely
● Decided to use the newer Swift because some Multipeer bugs were fixed

Design

● Had to make significant changes over the semester
● DSR Protocol
● Node to Node Communication
● Node IDs
● Groups

Nodes

● Users specify a username
● Nodes need a unique ID - identified by their ID

○ Advertising ID
○ Vendor ID

● Couldn’t use Advertising ID
● Usernames shown as chosen name and 4 digits of Vendor ID

DSR

● Networking protocol initially used
● Can be used for ad hoc networks
● Written with the assumption nodes are aware of other nodes already
● We needed a way to update in close to real time when a node joined or

dropped the network
● Heartbeat is our solution

Heartbeat - Week 7, second semester

● Broadcast message with route information
● Contains list of nodes passed through thus far
● Nodes add their ID and rebroadcast
● Discard heartbeats already seen
● Store paths in an array
● Updated by the heartbeat

Heartbeat

Node to Node Communication

● 2 Networking layers
● Ad hoc and Multipeer layers
● Work together

Multipeer Layer

● Swift code library that facilitates ad hoc networking
● Establishes connection with nearby nodes
● Does the actual sending of data
● Maintains list of local peers
● Passes the received data to ad hoc layer

Ad hoc Layer

● Responsible for generating heartbeat
● Decides what to do with data received

○ Propagate or discard heartbeats
○ Build routes from heartbeat
○ Determine the path for messages the node sends
○ Determine the next hop for messages
○ Display messages intended for current node

● Tells Multipeer layer who to send to next

Networking Layers

Messages

● Messages have headers to identify type
● Heartbeat messages - type 0
● Text messages - type 1
● Response messages - type 2
● Group messages - type 3
● Message handler class in ad hoc layer parses header
● Messages can be encrypted
● Nodes send confirmation of message arrival

Groups

● Initially going to have a large general chat
● Users can join a group to chat together
● In the backend single conversations and groups are implemented the same
● In the future passwords can be added to group chats to allow them to be

used by groups like law enforcement

UI

● Created in Xcode’s storyboard
● Can also be programmatically generated and updated
● Many mandatory ID’s and connectors added in last Swift update and poorly

documented
● Groups and users displayed in a list
● Standard chat window
● Group member who left had learned UI already

CoreData

● Storing persistent data
● Known issues added in Swift update, started switching to Realm
● Halfway through second semester Apple fixed CoreData issues

Encryption

● Two nodes over time create unique paths
● Both of the nodes share these unique paths
● Locally generate an encryption key
● The two nodes can now send encrypted messages

Unique Paths

● Unique paths occur when two nodes have a list of paths between them
● The two nodes are the only ones in every single path
● Use these paths as randomness to generate key

Testing

● Had to virtualize development environment due to Swift restrictions
● Made virtual machines running OSX
● Tested on iOS simulator most of the semester

○ Simulated 3 iPads and tested messaging between them

Testing

● Tested physically by spreading iPads across a distance
● Had to adjust when testing on physical iPads

○ Range on the iPads is far

● Multipeer worked well virtually, but not as well on physical hardware
○ iPads did not connect as easily on actual hardware

Virtual Network Setup

Retrospect

● Using a language that was in beta caused lots of issues
● Decided on Swift too quickly
● Apples’ app development restrictions were a challenge
● Many aspects of the project were completely new to us

○ Gained experience in networking
○ More exposure to mobile development
○ Learned Swift programming language - interesting paradigm

● Had to reassess our knowledge and responsibilities when member left

Questions

