MadHoc

Mobile Ad Hoc Networking

The Team

Ethan Niemeyer
Cole Cummings

Cody Lougee

Advisor/Client: George Amariucai

Project Description

Mobile device chat application

Works without typical network infrastructure
Achieved by creating an ad-hoc network
Encrypts messages

Ad Hoc

e No infrastructure
e Dynamically changing
e All nodes have equal responsibility/privileges on the network

Node

e Phones
e FEach connects to those around it
e Propagate messages further

Example of an Ad Hoc Network

Early First semester

e Focused on researching existing projects
e Brushing up on Android
e Studying Ad Hoc networking examples

Existing App - Fire Chat

e Created by OpenGarden

e Wrote their own library for wireless communication on top of wifi and
bluetooth

e Their library is not open sourced

e Does not support any form of encryption right now

Existing App - Serval

e Created for Australian outback and areas where the population is too sparse
to have cell tower infrastructure

e Intended to be used by rescue personnel and law enforcement in
emergencies

e Also some everyday use by people

Original prototype - Android

e Group had some previous experience in Android
e We started basic prototypes in Android
e Some early time was spent looking into similar apps that already exist

Android

Apps written in Java

Similar Applications exist on Android
Android’s implementation of Peer to Peer
One way spoke network

True Ad Hoc disabled at the firmware level

I0S

Apps written in Swift

Multipeer Connectivity library

Multipeer provided basic ad hoc functionality
Connects nearby nodes

Sends data between nodes

IOS -

Week 10, First semester

e Most promising of possible solutions

e However
o No experience with Swift, little experience with mobile apps
o Apps must be developed on Xcode which only runs on OSX
o One member had an Apple computer, no one had Apple mobile devices
o Multipeerisn't perfect

Second Semester

e Holden transferred Universities
e Swift update broke boilerplate code and removed some functions

completely
e Decided to use the newer Swift because some Multipeer bugs were fixed

Design

Had to make significant changes over the semester
DSR Protocol

Node to Node Communication

Node IDs

Groups

Nodes

e Users specify a username

e Nodes need a unique ID - identified by their ID
o Advertising ID
o VendorID

e Couldn't use Advertising ID
e Usernames shown as chosen name and 4 digits of Vendor ID

DSR

Networking protocol initially used

Can be used for ad hoc networks

Written with the assumption nodes are aware of other nodes already
We needed a way to update in close to real time when a node joined or
dropped the network

e Heartbeat is our solution

Heartbeat - Week 7, second semester

Broadcast message with route information
Contains list of nhodes passed through thus far
Nodes add their ID and rebroadcast

Discard heartbeats already seen

Store paths in an array

Updated by the heartbeat

Heartbeat

Node to Node Communication

e 2 Networking layers
e Ad hoc and Multipeer layers
e Work together

Multipeer Layer

Swift code library that facilitates ad hoc networking
Establishes connection with nearby nodes

Does the actual sending of data

Maintains list of local peers

Passes the received data to ad hoc layer

Ad hoc Layer

e Responsible for generating heartbeat

e Decides what to do with data received
o Propagate or discard heartbeats
o Build routes from heartbeat
o Determine the path for messages the node sends
o Determine the next hop for messages
o Display messages intended for current node

e Tells Multipeer layer who to send to next

Networking Layers

Ad-hoc networking
layer

Multipeer
networking layer

Messages

Messages have headers to identify type

Heartbeat messages - type 0

Text messages - type 1

Response messages - type 2

Group messages - type 3

Message handler class in ad hoc layer parses header
Messages can be encrypted

Nodes send confirmation of message arrival

Groups

Initially going to have a large general chat

Users can join a group to chat together

In the backend single conversations and groups are implemented the same
In the future passwords can be added to group chats to allow them to be
used by groups like law enforcement

Ul

Created in Xcode's storyboard

Can also be programmatically generated and updated

Many mandatory ID’s and connectors added in last Swift update and poorly
documented

Groups and users displayed in a list

Standard chat window

Group member who left had learned Ul already

CoreData

e Storing persistent data
e Known issues added in Swift update, started switching to Realm
e Halfway through second semester Apple fixed CoreData issues

Encryption

Two nodes over time create unique paths

Both of the nodes share these unique paths
Locally generate an encryption key

The two nodes can now send encrypted messages

Unique Paths

e Unique paths occur when two nodes have a list of paths between them
e The two nodes are the only ones in every single path
e Use these paths as randomness to generate key

Testing

e Had to virtualize development environment due to Swift restrictions
e Made virtual machines running OSX

e Tested on iOS simulator most of the semester
o Simulated 3 iPads and tested messaging between them

Testing

e Tested physically by spreading iPads across a distance
e Had to adjust when testing on physical iPads
o Range onthe iPads is far

e Multipeer worked well virtually, but not as well on physical hardware
o iPads did not connect as easily on actual hardware

Virtual Network Setup

VMware Host

Retrospect

Using a language that was in beta caused lots of issues
Decided on Swift too quickly
Apples’ app development restrictions were a challenge

Many aspects of the project were completely new to us
o Gained experience in networking
o More exposure to mobile development
o Learned Swift programming language - interesting paradigm

Had to reassess our knowledge and responsibilities when member left

Questions

