
MadHoc
A Mobile Ad-hoc Network

Team Members: Cole Cummings, Ethan Niemeyer, Cody Lougee
Advisor/Client: George Amariucai

Project Goals
● Build a messaging application (app) for mobile devices.
● App works in the absence of standard wireless network 

infrastructure. 
● App will function by maintaining an ad-hoc network.
● An ad-hoc secret-key establishment protocol will allow secure 

communication between the users.

Testing
Environment
● Xcode iPad/iPhone simulators in VMware
● iPad devices physically distributed

Strategy
● Simulate heavy loads virtually
● Test how the network responds to sub-networks 

leaving and joining
● Test if all nodes can talk to each other
● Check if encryption is working properly

Technologies used
Apple iPad - Apples’ tablet computer used to run and 
test the app on.
Xcode - Apples’ IDE used for developing the app.
iOS - The operating system that runs on the iPad.
OSX - Apple desktop operating system used to run 
Xcode.
Swift 2.0 - Programming language used to write the app.
Multipeer Connectivity Library - Swift code library that 
handles peer to peer connections.
VMware - Virtual machine software used to simulate 
multiple mobile devices as well as the network 
conditions.

Design approach

Intended users and uses
● Fire and rescue workers could use it to communicate if 

cell towers or power is knocked out in an area after a 
natural disaster

● Protestors have used similar apps to plan protests in 
Iraq and Hong Kong when the government cut off 
internet access

Design requirements
Functional
● Operate without access to cell towers, wifi routers, 

internet access, etc.
● Send communication securely if possible
● Users communicate via joined groups
● Create and maintain an ad-hoc network

Non-functional
● Reasonable response time
● Adhere to Apples’ app store standards

Operating environment
● Primarily outdoors in scenarios such as
○ Diaster areas
○ Protests
○ Large gatherings

Ad-hoc network
In an ad-hoc network each 
connected device participates in 
network routing. Devices are 
connected to one another rather 
than a central router. 

Ad-hoc networking 
layer

Multipeer 
networking layer

Network layering
The networking logic is divided 
into two layers that talk with 
each other. Our ad-hoc layer 
and Apples’ Multipeer 
framework layer.

Ad-hoc layer
Manages route finding, device 
discovery, and encryption. Devices in 
the network and routes to them are 
found by using a heartbeat, which is 
explained below. Data is passed from 
one device to another until it 
reaches its destination. While 
Multipeer handles sending data to 
the next device, the ad-hoc layer 
decides what the next network hop 
is.

Multipeer layer
Swift code library that looks 
for devices within range and 
creates a connection with 
them. It also sends data and 
receives data from connected 
peers. This data is passed to 
the ad-hoc layer where further 
processing happens. 

Heartbeat
Each device sends out a special heartbeat 
broadcast message. The message is sent out 
periodically. Since ad-hoc networks are 
dynamically changing, the heartbeat acts as a 
way to keep track of what devices are 
currently in the network. The heartbeat 
contains the route it has taken thus far. The 
device stores the route to the heartbeat’s 
originator and re-broadcasts the heartbeat. If 
the heartbeat has already been seen, discard 
it.

Discard

Discard 
one

Encryption
Once enough devices join the network, a 
secret key between two devices can be 
generated. The key is generated by looking 
at known routes cointaining the two 
devices. The routes that are unique to both 
devices can be used for randomness to 
generate the key.

Simulation
A simple ad-hoc network can be 
simulated for testing purposes. The IDE 
Xcode can simulate a single iOS device. In 
order to simulate multiple iOS devices, 
multiple instances of OSX networked 
together need to be ran. One instance of 
OSX acts as a middle man that the other 
two instances talk through. 

Routes
1 3 4 7 11
2 6 5
1 2 5 8
4 7 5 2 9

Key between two 
devices

Algorithm to find 
unique paths and 
generate key


